Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line.

نویسندگان

  • Darrell J Killian
  • E Jane Albert Hubbard
چکیده

Interactions between the somatic gonad and the germ line influence the amplification, maintenance, and differentiation of germ cells. In Caenorhabditis elegans, the distal tip cell/germline interaction promotes a mitotic fate and/or inhibits meiosis through GLP-1/Notch signaling. However, GLP-1-mediated signaling alone is not sufficient for a wild-type level of germline proliferation. Here, we provide evidence that specific cells of the somatic gonadal sheath lineage influence amplification, differentiation, and the potential for tumorigenesis of the germ line. First, an interaction between the distal-most pair of sheath cells and the proliferation zone of the germ line is required for larval germline amplification. Second, we show that insufficient larval germline amplification retards gonad elongation and thus delays meiotic entry. Third, a more severe delay in meiotic entry, as is exhibited in certain mutant backgrounds, inappropriately juxtaposes undifferentiated germ cells with cells of the proximal sheath lineage, leading to the formation of a proximal germline tumor derived from undifferentiated germ cells. Tumors derived from dedifferentiated germ cells, however, respond to the proximal interaction differently depending on the mutant background. Our study underscores the importance of strict developmental coordination between neighboring tissues. We discuss these results in the context of mechanisms that may underlie tumorigenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gonadogenesis in Pristionchus pacificus and organ evolution: development, adult morphology and cell-cell interactions in the hermaphrodite gonad.

The nematode gonad is an exemplary system for the study of organogenesis and fundamental problems in developmental and cellular biology. Nematode gonads vary dramatically across species (Chitwood, B.G., Chitwood, M.B., 1950. Introduction to Nematology." University Park Press, Baltimore; Felix, M.A., Sternberg, P.W., 1996. Symmetry breakage in the development of one-armed gonads in nematodes. De...

متن کامل

Analysis of the role of tra-1 in germline sex determination in the nematode Caenorhabditis elegans.

In wild-type Caenorhabditis elegans there are two sexes, self-fertilizing hermaphrodites (XX) and males (XO). To investigate the role of tra-1 in controlling sex determination in germline tissue, we have examined germline phenotypes of nine tra-1 loss-of-function (lf) mutations. Previous work has shown that tra-1 is needed for female somatic development as the nongonadal soma of tra-1(lf) XX mu...

متن کامل

A mutation of cdc-25.1 causes defects in germ cells but not in somatic tissues in C. elegans.

By screening C. elegans mutants for severe defects in germline proliferation, we isolated a new loss-of-function allele of cdc-25.1, bn115. bn115 and another previously identified loss-of-function allele nr2036 do not exhibit noticeable cell division defects in the somatic tissues but have reduced numbers of germ cells and are sterile, indicating that cdc-25.1 functions predominantly in the ger...

متن کامل

Tropomyosin and troponin are required for ovarian contraction in the Caenorhabditis elegans reproductive system.

Ovulation in the nematode Caenorhabditis elegans is coordinated by interactions between the somatic gonad and germ cells. Myoepithelial sheath cells of the proximal ovary are smooth muscle-like cells, but the regulatory mechanism of their contraction is unknown. We show that contraction of the ovarian muscle requires tropomyosin and troponin, which are generally major actin-linked regulators of...

متن کامل

Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline.

Development of the nematode Caenorhabditis elegans is highly reproducible and the fate of every somatic cell has been reported. We describe here a previously uncharacterized cell fate in C. elegans: we show that germ cells, which in hermaphrodites can differentiate into sperm and oocytes, also undergo apoptotic cell death. In adult hermaphrodites, over 300 germ cells die, using the same apoptot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 279 2  شماره 

صفحات  -

تاریخ انتشار 2005